ул. Текстильщиков
8 (919) 244-92-81
8 (965) 137-84-73
sanok1b51@yandex.ruЭтот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Яндекс.Погода

Изображение кнопки наверх

Векторные диаграммы

Понятие о векторах.

На рисунке 1.1 приведена кривая изменения переменного тока во времени. Ток сначала растет от нуля (при φ=0°)до максимального положительного значения +Imax (при φ=90°), затем убывает, переходит через нуль (при φ=180), достигает максимального отрицательного значения -Imax (при φ=270°) и, наконец, возвращается к нулю (при φ=360°). После этого цикл изменения тока повторяется.

Кривая изменения переменного тока во времени, приведенная на рис. 1.1, называется синусоидой. Время Т в течение которого происходит полный цикл изменения тока, соответствующий изменению угла на 360°, называется периодом переменного тока. Число периодов за 1 секунду называется частотой переменного тока. В промышленных установках и в быту в на территории бывшего СССР и в других странах Европы используется главным образом переменный ток частотой 50 Гц. Этот ток 50 раз в секунду принимает положительное и отрицательное направление. Изменение переменного тока во времени можно записать в следующем виде.

i=Imax*sin(ωt+α)

Где i – мгновенное значение тока, т.е. значение тока в каждый момент времени; Imax – максимальное значение тока; ω=2πf – угловая частота переменного тока, f=50 Гц, ω=2π·50=314; α – начальный угол, соответствующий моменту времени, с которого начинается отсчет времени (при t=0). Для частного случая, показанного на рис.1.1, α=0°.

Анализируя действие устройств релейной защиты и автоматики, необходимо сопоставлять токи и напряжения, складывать или вычитать их, определять углы между ними и производить другие операции. Пользоваться при этом кривыми, подобными приведенной на рис.1.1, неудобно, поскольку построение синусоид тока и напряжения занимает много времени и не дает простого и наглядного результата. Поэтому для упрощения принято изображать токи и напряжения в виде отрезков прямых линий, имеющих определенную длину и направление, - так называемых векторов (А0 на рис.1.1). один конец вектора закреплен на точке 0 – начало координат, а второй вращается против часовой стрелки.

Мгновенное значение тока или напряжения в каждый момент времени определяется проекцией на вертикальную ось вектора, длина которого равна максимальному значению тока или напряжения. Эта проекция будет становится то положительной, то отрицательной, принимая максимальные значения при вертикальном расположении вектора. За время Т, равное периоду переменного тока, вектор совершит полный оборот по окружности (360°), занимая последовательно положения 0А’,0A”, 0A’’’ и т.д. При частоте переменного тока 50 Гц вектор будет совершать 50 об/с.

Таким образом, вектор тока или напряжения – это отрезок прямой, равный по величине максимальному значению тока или напряжения, вращающийся относительно точки 0 против движения часовой стрелки со скоростью, определяемой частотой переменного тока. Зная положение вектора в каждый момент времени, можно определить мгновенное значение тока или напряжения в данный момент. Так, для положения вектора тока 0А, показанного на рис.1.2, его мгновенное значение определяется проекцией на вертикальную ось, т.е. 0А”=0А sin φ.

На основании рис.1.2 можно также сказать, что ток в данный момент времени имеет положительное значение. Однако это ещё не дает полного представления о протекании процесса в цепи переменного тока, так как неизвестно, что значит положительный или отрицательный ток, положительное или отрицательное напряжение.

Для того чтобы векторные диаграммы токов и напряжений давали полную картину, их нужно увязать с фактическим протеканием процесса в цепи переменного тока, т.е. необходимо предварительно принять условные положительные направления токов и напряжений в рассматриваемой схеме. Без выполнения этого условия, если не заданы положительные направления токов и напряжений, любая векторная диаграмма не имеет никакого смысла.

Рассмотрим простую однофазную цепь переменного тока, приведенную на рис.1.3, а. От однофазного генератора энергия предается в активное сопротивление нагрузкиR. Зададимся положительными направлениями токов и напряжений в рассматриваемой цепи. За условное положительное направление напряжения и ЭДС примем направление, когда потенциал вывода генератора или нагрузки, связанного с линией, выше потенциала вывода, соединенного с землей. В соответствии с правилами, принятыми в электротехнике, положительное направление для ЭДС обозначено стрелкой, направленной в сторону более высокого потенциала (от земли к линейному выводу), а для напряжения – стрелкой, направленной в сторону более низкого потенциала (от линейного вывода к земле).

Переменный ток будет считать положительным, когда во внешней цепи он проходит от шин генератора к нагрузке (обозначено стрелкой). Построим векторы ЭДС и тока, характеризующие работу рассматриваемой цепи (рис.1.6, б). Вектор ЭДС произвольно обозначим вертикальной линией со стрелкой, направленной вверх. Для построения вектора тока запишем для цепи уравнение согласно второму закону Кирхгофа:

отсюда

Поскольку знаки векторов тока и ЭДС в выражении совпадают, вектор тока будет совпадать с вектором ЭДС и на рис.1.3, б.

Здесь и в дальнейшем при построении векторов будем откладывать их по величине равным эффективному значению тока и напряжения, что удобно для выполнения различных математических операций с векторами. Как известно, эффективные значения тока и напряжений в √2 раз меньше соответствующих максимальных (амплитудных).

При заданных положительных направлениях тока и напряжения однозначно определяется и знак мощности. Положительной в рассматриваемом случае будем считать мощность, направленная от шин генератора в линию:

так как векторы тока и ЭДС на рис.1.6, б совпадают.

Аналогичные соображения могут быть высказаны и для трехфазной цепи переменного тока, показанной на рис.1.7, а. В этом случае во всех фазах приняты одинаковые положительные направления, чему соответствует симметричная диаграмма токов и напряжений, приведенная на рис.1.7, б. Отметим, что симметричной называется такая трехфазная система векторов, когда все три вектора равны по величине и сдвинуты относительно друг друга на угол 120°.

------------------------------------------------------------------------------------------------

Оперпции с векторами

Когда мы рассматриваем только одну кривую тока или напряжения, начальное значение угла, с которого начинается отсчет, или, иначе говоря, положение вектора на диаграмме, соответствующее начальному моменту времени, может быть принято произвольным. Если же одновременно рассматриваются два или несколько токов и напряжений, то, задавшись начальным положением на диаграмме одного из векторов, мы тем самым уже определяем положение всех других векторов.